Zur Chemie des Xenons, 1. Mitt.:

Xenon(II)-bis(pentafluoro-orthotellurat), Xe(OTeF₅)₂

Von

F. Sladky

Aus dem Institut für Anorganische und Analytische Chemie der Universität Innsbruck

Mit 1 Abbildung

(Eingegangen am 31. März 1970)

Pentafluoro-orthotellursäure, HOTeF₅, reagiert mit Xenondifluorid unter HF-Abspaltung quantitativ zu Xenon(II)-bis-(pentafluoro-orthotellurat), Xe(OTeF₅)₂ (Schmp.: 35—37° C). Die Verbindung ist bis etwa 130° C thermisch stabil, oberhalb dieser Temperatur zerfällt sie hauptsächlich in Bis(pentafluorotellur)oxid, F₅TeOTeF₅, Sauerstoff und Xenon. Massenspektroskopisch konnten jedoch auch Bis(pentafluorotellur)peroxid, F₅TeOTeF₅ und Verbindungen der allgemeinen Formel F₅Te(OTeF₄)_xOTeF₅ (x = 1, 2) als Zerfallsprodukte nachgewiesen werden. Röntgen-Einkristalluntersuchungen zeigen, daß Xe(OTeF₅)₂ eben (in bezug auf das TeOXeOTe-Skelett) gebaut ist und die F₅TeO-Gruppen in *trans*-Stellung angeordnet sind. Das Massen-, Infrarot-, Laser-Raman- und ¹⁹F-KMR-Spektrum werden untersucht.

Xenon Chemistry, I: Xe(OTeF₅)₂

Xenon(II)-bis(pentafluoro-orthotellurate), Xe(OTeF₅)₂ (M.P. 35—37° C), is formed in quantitative yield in the reaction of pentafluoro-orthotelluric acid, HOTeF₅, with Xenondifluoride. HF is evolved during the reaction. Xe(OTeF₅)₂ is thermally stable up to 130° C. Above this temperature it mainly decomposes to bis(pentafluoro-tellurium)oxide, F₅TeOTeF₅, oxygen and xenon. Mass-spectroscopically, however, bis(pentafluorotellurium)peroxide and compounds of the general composition F₅Te(OTeF₄)_xOTeF₅ (x = 1, 2) have been identified as minor decomposition products. X-ray single crystal analysis proves the TeOXeOTe entity to be planar and the F₅TeO groups in *trans*-position. Results of mass-, infrared-, laser-Raman- and ¹⁹F-MMR-spectroscopy are given.

Einführung

Die Auswahl an Liganden für die Bildung von Edelgasverbindungen ist klein¹. Bis vor kurzem hielt man nur die elektronegativen

¹ N. Bartlett, Endeavour 22, 3 (1964); H. Selig, Halogen Chemistry, ed. V. Gutmann, Academic Press, New York, 1967, Vol. I, 403.

Liganden Fluor und unsubstituierten Sauerstoff für geeignet, Edelgasverbindungen zu bilden, die unter normalen Druck- und Temperaturverhältnissen stabil sind. Für Xenon(II) traf dies um so mehr zu, da Xenondifluorid² die einzige bekannte Verbindung darstellte. Xenonmonoxid ist unbekannt, Xenondichlorid konnte nur bei 20° K infrarotspektroskopisch³ und massenspektroskopisch⁴ charakterisiert werden.

Erst 1968 gelang es Bartlett und Sladky⁵ im Zuge einer Untersuchung des oxydierenden Verhaltens von XeF₂⁶, die Verbindungen Xenon(II)fluorid-fluorosulfat und Xenon(II)-fluorid-perchlorat darzustellen. Die dabei verwendete präparative Methode konnte auf die Darstellung von Xe(OSO₂F)₂ und Xe(OClO₃)₂ erweitert werden⁷.

Tabelle 1. Verbindungen der allgemeinen Formeln FXeOR und Xe(OR)2

	Schmp., °C	thermische Stabilität (Zersetzungs- temp., °C)	Literatur
			N. A.
FXeOSO ₂ F	36,6	20	5, 7
$Xe(OSO_2F)_2$	43 - 45	20	7
FXeOClO ₃	16,5	20	5,7
$Xe(OClO_3)_2$		- 20	7
$Xe(OTeF_5)_2$	35-37	150	diese Arbeit
FXeOTeF ₅	15	150	8
$FXeOC(O)CF_3$		explosiv	8
$Xe[OC(O)CF_3]_2^*$		ab - 20	
$[XeOTeF_5]^+ [AsF_6]^-$	160	200	9

* J. I. Musher [J. Amer. Chem. Soc. 90, 7371 (1968)] beschrieb kürzlich farblose Festsubstanzen, die er bei der Umsetzung von XeF₂ mit CF₃COOH bzw. CH₃COOH erhielt, als Xenon(II)trifluoroacetate bzw. Xe(II)acetate. Aus den präparativen Angaben (Überschuß an Säure) kann geschlossen werden, daß es sich dabei um Xe(OOCCH₃)₂ und Xe(OOCCF₃)₂ gehandelt haben könnte.

² R. Hoppe, H. Mattauch, K. M. Rödder und W. Dähne, Z. anorg. allgem. Chem. **324**, 214 (1963).

³ L. Y. Nelson und G. C. Pimentel, Inorg. Chem. 6, 1758 (1967).

⁴ H. Meinert, Z. Chem. 6, 71 (1966).

⁵ N. Bartlett und F. Sladky, Vortrag, 2. Europäisches Fluorsymposium, 28. bis 31. August 1968, Göttingen.

⁶ N. Bartlett und F. Sladky, Chem. Comm. 1968, 1046.

⁷ N. Bartlett, M. Wechsberg, F. Sladky, P. A. Bulliner, G. R. Jones und R. D. Burbank, Chem. Comm. **1969**, 703.

⁸ F. Sladky, 2. Mitt. zur Chemie des Xenons, Mh. Chem. 101, 1571.

⁹ F. Sladky, 3. Mitt.: Zur Chemie des Xenons, Mh. Chem. 101, 1577.

Eine Röntgen-Einkristallstrukturanalyse von FXeOSO₂F bestätigte⁷ die Zweibindigkeit des Xenons in dieser Verbindung.

In Tab. 1 sind alle nunmehr dargestellten Verbindungen der allgemeinen Formeln FXeOR und Xe(OR)₂ zusammengefaßt.

Über die Xenon(II)-pentafluoro-orthotellurate¹⁰ und das Xenon(II)bis(trifluoroacetat)¹¹ wurde bereits kurz berichtet.

Ergebnisse und Diskussion

XeF₂ reagiert mit Pentafluoro-orthotellursäure, HOTeF₅¹², unter HF-Abspaltung praktisch quantitativ (bezogen auf XeF₂) zu Xenon(II)bis(pentafluoro-orthotellurat), Xe(OTeF₅)₂.

$XeF_2 + 2 HOTeF_5 \rightarrow Xe(OTeF_5)_2 + 2 HF.$

Die Reaktion kann jedoch nicht mit stöchiometrischen Mengen zu Ende geführt werden, sondern ein mehrfach molarer Überschuß an HOTeF₅ muß portionsweise zugegeben und der jeweils gebildete Fluorwasserstoff abgesaugt werden, um reines $Xe(OTeF_5)_2$ zu erhalten.

Als Zwischenprodukt tritt Xenon(II)fluorid-pentafluoro-orthotellurat, FXeOTeF₅, auf:

$$\operatorname{XeF}_{2} \xrightarrow[+ \text{ HOTeF}_{5}]{} \operatorname{FXeOTeF}_{5} \xrightarrow[+ \text{ HOTeF}_{5}]{} \operatorname{Xe(OTeF}_{5})_{2}$$

 $Xe(OTeF_5)_2$ (ber. Molekulargewicht 608,46) ist eine farblose Festsubstanz, Schmp. 35—37° C, mit einem unangenehmen, Übelkeit erregenden Geruch. Der Dampfdruck bei Raumtemp. ist kleiner als 1 Torr. Die Verbindung kann jedoch in einem dynamischen Vakuum von 0,001 Torr bei Raumtemp. unzersetzt sublimiert werden.

 $Xe(OTeF_5)_2$ löst sich ausgezeichnet in CCl₄ und Acetonitril. Lösungen in CCl₄ sind auch über längere Zeit hin stabil. Explosionsartige bzw. sehr heftige Reaktionen treten mit Äthanol, Aceton und Benzol ein.

In reinem Wasser ist $Xe(OTeF_5)_2$ nur sehr wenig löslich. Es tritt damit auch nur sehr langsam Reaktion ein. In alkalischen Medien ist die Zersetzung unter stürmischer Xenon- und Sauerstoffentwicklung in wenigen Sekunden beendet.

 ¹⁰ F. Sladky, Angew. Chem. 81, 330 (1969); Angew. Chem. internat. Ed.
 8, 373 (1969): Angew. Chem. 81, 536 (1969); Angew. Chem. internat. Ed.
 8, 523 (1969).

¹¹ F. Sladky, Vortrag, 5. Internationales Fluorsymposium, 21. bis 26. Juli 1969, Moskau.

¹² A. Engelbrecht und F. Sladky, Angew. Chem. **76**, 379 (1964); Angew. Chem. internat. Ed. **3**, 383 (1964); Mh. Chem. **96**, 159 (1965); A. Engelbrecht, W. Loreck und W. Nehoda, Z. anorg. allgem. Chem. **360**, 88 (1968).

$$\begin{split} & \operatorname{Xe}(\operatorname{OTeF}_5)_2 + \operatorname{H}_2\operatorname{O} \rightarrow \operatorname{Xe} + 2 \operatorname{HOTeF}_5 + \frac{1}{2} \operatorname{O}_2 \\ & 2 \operatorname{HOTeF}_5 + 10 \operatorname{H}_2\operatorname{O} \rightarrow 2 \operatorname{H}_6\operatorname{TeO}_6 + 10 \operatorname{HF}. \end{split}$$

Pentafluoro-orthotellursäure kann dabei als Hydrolyseprodukt nur beobachtet werden, wenn ein Unterschuß von Wasser verwendet wird, da HOTeF₅ ebenfalls rasch mit Wasser unter stufenweiser Substitution des Fluors durch Hydroxylgruppen¹² zu Orthotellursäure als Endprodukt reagiert. Xe(OTeF₅)₂ kann an der Luft für kurze Zeit gehandhabt werden; dabei entstehende Hydrolyseprodukte können durch Abpumpen leicht entfernt werden.

Thermisches Verhalten

 $Xe(OTeF_5)_2$ ist in vorfluorierten Monel-Gefäßen bis etwa 130° C thermisch stabil. Oberhalb dieser Temperatur tritt langsame Zersetzung ein:

$$Xe(OTeF_5)_2 \xrightarrow{130 \circ C} Xe + F_5TeOTeF_5 + \frac{1}{2}O_2.$$

Das erwartete, noch nicht beschriebene Bis(pentafluorotellur)peroxid wurde auf diese Weise nicht erhalten.

$$Xe(OTeF_5)_2 \xrightarrow{//}{//} Xe + F_5TeOOTeF_5.$$

Da jedoch F_5 TeOOTe F_5 massenspektroskopisch beobachtet werden konnte (siehe unten), ist dieses Zwischenprodukt offensichtlich bei der Zersetzungstemperatur von Xe(OTe F_5)₂ nicht mehr stabil und zerfällt in Bis(pentafluorotellur)oxid¹² und Sauerstoff

 $F_5TeOOTeF_5 \xrightarrow{130 \circ C} F_5TeOTeF_5 + \frac{1}{2}O_2.$

Bei Zersetzungstemperaturen um 200° C werden als Reaktionsprodukte auch TeF₆ und eine gelbe Festsubstanz beobachtet. Vorläufige Untersuchungen weisen darauf hin, daß es sich hiebei um das noch unbekannte Tellur-oxid-tetrafluorid handeln dürfte. Es ist zu erwarten, daß TeOF₄ im Gegensatz zum gasförmigen SOF₄ eine polymere Festsubstanz ist (SeOF₄ ist noch unbekannt).

Als Bildungsreaktion für diese Substanzen kann eine Dismutierung von Bis(pentafluorotellur)oxid angenommen werden,

$$F_5 TeOTeF_5 \xrightarrow{200 \, {}^\circ C} TeF_6 + (TeOF_4)_x$$

wie sie für analoge Schwefelfluoride bereits bekannt ist¹³.

 $SF_5OSF_5 \rightarrow SF_6 + SOF_4$.

¹³ H. J. Emeléus und B. Tittle, J. Chem. Soc. 1963, 1644.

Untersuchungen am Massenspektrometer

Das Massenspektrum von $Xe(OTeF_5)_2$ ist wegen der Vielzahl der möglichen Bruchstücke, wegen der großen Anzahl natürlich vorkommender Xenon- und Tellurisotope und auf Grund von Sekundärreaktionen in der Apparatur relativ komplex. Tab. 2 gibt die wichtigsten der gefundenen Ionenspitzen wieder.

m/e	Relative Intensität	Zuordnung
377	100	${ m XeOTeF_5^+}$
599	12	$XeO_2Te_2F_9^+$ (F ₅ TeOXeOTeF ₄ ⁺)
561	2	$\rm XeO_2Te_2F_7^+$
466	0,5	$Te_2OF_{10}^+$ (F ₅ TeOTeF ₅ ⁺)
447	25	$Te_2OF_9^+$
463	0,1	$Te_2O_2F_9$ (F ₅ TeOOTeF ₄ +)
669	9	$Te_3O_2F_{13}$ (F ₅ TeOTeF ₄ OTeF ₄ ⁺)
891	0,5	$Te_4O_3F_{17}$ ($F_5TeOTeF_4OTeF_4OTeF_4^+$)

Tabelle 2	2.	Teilweises	Massenspektrum	\mathbf{von}	$Xe(OTeF_5)_2$
					1

Bei den ersten Durchläufen wurden nur Te—O—F-hältige Bruchstück-Ionen gefunden. Erst nach Konditionierung der Apparatur konnten die xenonhältigen Peaks bei relativ hohem Partialdruck an Xe(OTeF₅) vermessen werden. Die Ionenspitze mit der relativen Intensität 100 bei m/e = 377 kann eindeutig dem Bruchstück-Ion XeOTeF₅+ zugeordnet werden. Die experimentelle und die berechnete Isotopenhäufigkeitsverteilung der 9 Xenon- und 8 Tellurisotope stimmen ausgezeichnet überein.

Die Molekülionenspitze (XeO₂Te₂F₁₀⁺, m/e = 618) war von zu geringer Intensität, um beobachtet werden zu können. Nur die der Abdissoziation von einem bzw. drei Fluoratomen entsprechenden Bruchstück-Ionenspitzen (XeO₂Te₂F₉⁺, m/e = 599, XeO₂Te₂F₇⁺, m/e = 561) wurden angezeigt. Es ist jedoch bekannt, daß die Molekülpeaks verwandter Verbindungen, wie z. B. des Bis(pentafluorotellur)oxids, erst nach extensiver Konditionierung der Apparatur und auch dann nur mit geringer Intensität erhalten werden können¹⁴.

Interessanterweise treten zwei Gruppierungen von Peaks (mit geringer Intensität) bei Massenzahlen auf (m/e = 669, m/e = 891), die deutlich höher liegen als der Molekülpeak von Xe(OTeF₅)₂+ (m/e = 618)und die, wie aus der Isotopenhäufigkeitsverteilung hervorgeht, keine Xenonatome enthalten. Diese können nur durch Verbindungen der allgemeinen Formel F₅Te(OTeF₄)_xOTeF₅ (x = 1, 2) erklärt werden, wie sie

¹⁴ A. Engelbrecht, private Mitteilung.

in der Schwefel—Fluor-Chemie bereits seit einiger Zeit bekannt sind ¹⁵. Weiters können auch Bruchstück-Ionenspitzen beobachtet werden (m/e = 463, m/e = 444), die dem Bis(pentafluorotellur)peroxid zugeordnet werden müssen.

Offensichtlich zerfällt $Xe(OTeF_5)_2$ entweder im Hochvakuum oder in der Ionisationskammer entsprechend

$$Xe(OTeF_5)_2 \rightarrow Xe + F_5TeOOTeF_5$$

oder gemäß

 $\begin{array}{l} 2 \operatorname{Xe}(\operatorname{OTeF}_5)_2 \rightarrow 2 \operatorname{Xe} + \operatorname{F}_5 \operatorname{TeOTeF}_4 \operatorname{OTeF}_5 + \operatorname{TeF}_6 + \operatorname{O}_2 \\ 3 \operatorname{Xe}(\operatorname{OTeF}_5)_2 \rightarrow 3 \operatorname{Xe} + \operatorname{F}_5 \operatorname{TeOTeF}_4 \operatorname{OTeF}_4 \operatorname{OTeF}_5 + 2 \operatorname{TeF}_6 + \frac{3}{2} \operatorname{O}_2. \end{array}$

Eine Verbindung der Summenformel Te₃O₂F₁₄ wurde bereits in der Literatur kurz erwähnt¹⁶. Sie wurde in sehr kleinen Mengen bei der Fluorierung von TeO₂ mit elementarem Fluor erhalten. Es sollte in der Tat möglich sein, solche Verbindungen, deren Stabilität auch unter normalen Druck- und Temperaturverhältnissen durchaus wahrscheinlich erscheint, mit einer geeigneten synthetischen Methode aus Xe(OTeF₅)₂ darzustellen.

¹⁹F-KMR-Spektrum

Das ¹⁹F-KMR-Spektrum von $Xe(OTeF_5)_2$ wurde in CCl₄-Lösung aufgenommen, mit CF₃COOH als externem Standard:

 AB_4 -Typ $\Delta A = -39,7$ ppm $\Delta B = -34,7$ ppm $J_{AB} = -192,9$ Hz.

Die gefundenen Werte liegen im Bereich der bei anderen Verbindungen mit der F₅TeO-Gruppe gefundenen chemischen Verschiebungen und Kopplungskonstanten [z. B. J_{AB} in (F₅Te)₂O: 176,3 Hz]¹⁷.

Infrarot- und Laser-Raman-Spektrum von Xe(OTeF₅)₂

Infrarot-Spektrum (KBr, 400 bis 4000 cm⁻¹): in CCl₄-Lösung; Laser-Raman-Spektrum (He—Ne-Laser, 50—1000 cm⁻¹): mikrokristallines Pulver.

Tab. 3 gibt die Schwingungsspektren von $Xe(OTeF_5)_2$ einschließlich der vorgeschlagenen Zuordnung wieder.

Der Aufbau von $Xe(OTeF_5)_2$ ist zu kompliziert, um eine detailliertere Zuordnung möglich erscheinen zu lassen. Da das Schwin-

¹⁵ S. M. Williamson, "Progress in Inorganic Chemistry", ed. F. A. Cotton, Interscience, New York, Vol. 7, 49.

¹⁶ R. Campbell und P. L. Robinson, J. Chem. Soc. 1956, 3454.

¹⁷ A. Engelbrecht, persönliche Mitteilung.

gungsspektrum von Bis(pentafluorotellur)peroxid (F_5 TeOOTe F_5) nicht bekannt ist, kann kein Vergleich mit der nächstliegenden Modellstruktur durchgeführt werden. Doch erwiesen sich die inneren Schwingungen der F_5 TeO-Gruppen in verwandten Verbindungen als weitgehend lagekonstant¹⁸.

IR (cm ⁻¹)	Raman (cm ⁻¹)	Zuordnung
780 s 705 vs 628 s	$\left. \begin{array}{c} 794 \text{ vw} \\ 703 \text{ sh} \\ 692 \text{ m} \end{array} \right\}$	ν ΤεF, ν ΤεΟ
$475 \mathrm{m}$	647 m) 434 s 324 w)	v XeO
	302 w 231 m	$\delta { m TeF}_5, \delta { m OTeF}_5$
•	$\begin{array}{c} 195 \text{ vw} \\ 131 \text{ vs} \end{array}$	δ OXeO

Tabelle 3. Schwingungsspektrum von $Xe(OTeF_5)_2$

Die Zuordnung von 475 cm⁻¹ und 434 cm⁻¹ als asymmetrische bzw. symmetrische Xe—O-Valenzschwingung kann jedoch mit großer Sicherheit vorgenommen werden. In diesem Bereich wurden keine F₅TeO-Valenz- bzw. Deformationsschwingungen, wie sie alle bisher untersuchten Verbindungen mit einer F₅TeO-Gruppe aufweisen, gefunden¹⁸. Die Absorptionen liegen somit im Bereich der Xe—F-Schwingungen [z. B. Xe—F in XeF₂: $v_1(\text{sym.}) = 493 \text{ cm}^{-1}$, $v_3(\text{asym.}) = 555 \text{ cm}^{-1}$]. Die Xenon—Sauerstoff-Bindungsenergie ist demgemäß vergleichbar mit der Bindungsenergie in Xenonfluoriden [z. B. E(Xe-F) in XeF₂: 30 kcal/Mol]. Eine genauere Abschätzung aus den zugeordneten Frequenzen ist allerdings wegen der zu erwartenden, beträchtlichen Masseneffekte der F₅TeO-Gruppen problematisch.

Auffallend ist die relative Bandenarmut der Spektren und die angedeutete Ausschließung von IR- und RAMAN-Banden. Daraus kann auf ein Symmetriezentrum im Molekül geschlossen werden. Diese Folgerungen werden durch kristallographische Untersuchungen (siehe unten) unterstützt.

Röntgenographische Untersuchungen an Einkristallen

Einkristalle von $Xe(OTeF_5)_2$ konnten durch Kristallisation aus einer HOTeF₅-Lösung erhalten werden. Kristalle geeigneter Größe (0,1 bis

¹⁸ F. Sladky, Dissertation, 1965, Universität Innsbruck; H. Bürger, Z. anorg. allgem. Chem. **360**, 97 (1968).

0,3 mm Durchmesser) wurden in einer Trockenbox in Quarzkapillaren abgeschmolzen. Die Ergebnisse von *Bürger*-Präzessionsaufnahmen sind in Tab. 4 angegeben. Durch Vergleich mit *Debye*—*Scherrer*-Aufnahmen konnte gezeigt werden, daß die vermessenen Einkristalle repräsentativ für das Xe(OTeF₅)₂-Pulver sind.

Tabelle 4. Kristallstruktur von Xe(OTeF5)2

orthorhombisch	• • • •
$egin{array}{rl} a &=& 9,83 \pm 0,05 { m \AA}, \ b &=& 8,73 \pm 0,05 { m \AA}, \ c &=& 12,97 \pm 0,05 { m \AA}. \end{array}$	
Raumgruppe: Cmca— D_{2h}^{18}	
Z = 4 $V = 1114$ R ³ Röntgenographische Dichte = 3,64 gcm	-3

Die Raumgruppe Cmca erfordert bei Z = 4 für die äquivalenten Positionen (000, $0\frac{1}{2}\frac{1}{2}$) die Punkt-Symmetrie 2/m. Xe(OTeF₅)₂ besitzt daher eine Symmetrieebene und eine dazu senkrecht stehende zweizählige Deckachse, woraus die Zentrosymmetrie der Verbindung hervorgeht. Da die O—Xe—O-Einheit als linear angenommen werden muß, sind die F₅TeO-Gruppen in *trans*-Stellung angeordnet (siehe Abb. 1), wobei der Xe—O-Te-Winkel unbekannt ist.

Reaktionen des Xe(OTeF₅)₂

Beim Vergleich der Hydrolysebeständigkeit von SF₆ und TeF₆ zeigt sich, daß die Koordinationssphäre des Schwefels mit 6 Liganden bedeutend besser abgesättigt erscheint als die des Tellurs. Ähnliche Ergebnisse erhält man bei Reaktionen von CsF mit analogen Schwefelund Tellurverbindungen.

So erfolgt der nukleophile Angriff des Fluoridions im Pentafluoroschwefelfluorosulfat zu etwa 90% am Schwefel der Fluorosulfatgruppen und nur zu etwa 10% am Schwefel der F_5 SO-Gruppe¹⁹:

$$SF_5OOSF + CsF$$

 $OOF + CsF$
 $OOF + CsF$
 $OOF + CsF$
 $OOF + SF_6$

¹⁹ J. K. Ruff und M. Lustig, Inorg. Chem. 3, 1422 (1964).

Im Falle des Pentafluorotellur-fluorosulfates wird jedoch überwiegend Tellurhexafluorid gebildet²⁰:

Abb. 1. Molekülsymmetrie von Xe(OTeF₅)₂

Die Reaktionen von CsOTeF₅ und CsOSF₅ mit elementarem Fluor unterstreichen diese Ergebnisse:

$$\begin{split} \mathrm{CsOSF}_5 + \mathrm{F}_2 &\to \mathrm{CsF} + \mathrm{SF}_5\mathrm{OF}^{19}\\ \mathrm{CsOTeF}_5 + \mathrm{F}_2 &\to \mathrm{CsF} + \mathrm{TeF}_6 + \frac{1}{2} \mathrm{O}_2^{20}. \end{split}$$

Während im Falle von CsOSF₅ kein Angriff von F_2 am Schwefel erfolgt und sich Pentafluoroschwefelhypofluorit bildet, entsteht im Falle von CsOTeF₅ nur TeF₆ und Sauerstoff.

In Reaktionen von $Xe(OTeF_5)_2$ mit CsF wurde versucht, Xenate(II) zu synthetisieren:

$$egin{aligned} {
m Xe}({
m OTeF}_5)_2 + {
m CsF} &
ightarrow {
m F}_5{
m TeOXeO^-\,Cs^+} + {
m TeF}_6 \ {
m Xe}({
m OTeF}_5)_2 + 2\,{
m CsF} &
ightarrow {
m XeO}_2^{-2} + 2\,{
m Cs^+} + 2\,{
m TeF}_6. \end{aligned}$$

Die gesuchten Verbindungen konnten jedoch nicht isoliert werden, sondern ergaben die angeführten Zersetzungsprodukte.

$$2 \operatorname{F_5TeOXeO^-} \rightarrow 2 \operatorname{Xe} + \operatorname{F_5TeOTeF_5} + \operatorname{O_2^-} + \frac{1}{2} \operatorname{O_2^-}$$
$$2 \operatorname{XeO_2^{-2}} \rightarrow 2 \operatorname{Xe} + \operatorname{O_2^-} + \operatorname{O_2^-}.$$

²⁰ F. Sladky, unveröffentlicht.

Der nukleophile Angriff des Fluoridions erfolgt zum Großteil am Tellur, doch wird bei diesen Reaktionen auch etwas XeF_2 und $CsOTeF_5$ gebildet.

Versuche, Xe(II) zu Xe(IV) oder Xe(VI) aufzufluorieren, um Verbindungen wie $F_2Xe(OTeF_5)_2$ oder $F_4Xe(OTeF_5)_2$ darzustellen, verlaufen aus den oben erwähnten Gründen ebenfalls negativ, es bildete sich Tellurhexafluorid. Als Fluorierungsmittel wurden F_2 , Br F_5 und Xe F_6 verwendet.

Da es sich, wie bereits erwähnt, bei der Reaktion zwischen XeF_2 und HOTeF₅ um eine Gleichgewichtsreaktion handelt, deren K-Wert bei etwa 1 liegt, wurde versucht, HOTeF₅ mit einem Überschuß an anderen Säuren aus dem Gleichgewicht zu verdrängen:

 $\operatorname{Xe}(\operatorname{OTeF}_5)_2 \xrightarrow[+ \operatorname{HOR}]{} \operatorname{Xe}(\operatorname{OTeF}_5)(\operatorname{OR}) \xrightarrow[+ \operatorname{HOR}]{} \operatorname{Xe}(\operatorname{OR})_2$

Dies erscheint um so leichter möglich, als HOTeF₅ eine relativ leichtflüchtige Verbindung ist ($p_{25^{\circ}C} = \sim 130 \text{ Torr}$)¹². Derartige Reaktionen wurden mit HOSO₂F und CF₃COOH durchgeführt:

Mit $HOSO_2F$ konnte die bereits beschriebene Verbindung Xenon(II)bis(fluorosulfat)⁷ erhalten werden, mit CF_3COOH das Xenon(II)-bis-(trifluoroacetat) (siehe ¹⁰).

$$\begin{split} & \operatorname{Xe}(\operatorname{OTeF}_5)_2 + 2 \operatorname{HOSO}_2 F \to \operatorname{Xe}(\operatorname{OSO}_2 F)_2 + 2 \operatorname{HOTeF}_5 \\ & \operatorname{Xe}(\operatorname{OTeF}_5)_2 + 2 \operatorname{CF}_3 \operatorname{COOH} \to \operatorname{Xe}(\operatorname{OOCCF}_3)_2 + 2 \operatorname{HOTeF}_5. \end{split}$$

Da diese Reaktionen milder zu verlaufen scheinen als die direkte Darstellung aus $XeF_2 + HOR$, dürfte sich diese synthetische Methode als wertvoll zur Darstellung weiterer Verbindungen der Reihe $Xe(OR)_2$ erweisen.

Verbindungen der allgemeinen Formel $Xe(OR_1)(OR_2)$ konnten auch mit stöchiometrischen Ansätzen bis jetzt nicht erhalten werden.

Experimenteller Teil

Reagentien

Pentafluoro-orthotellursäure wurde durch Reaktion von BaH₄TeO₆ mit Fluorsulfonsäure dargestellt (Ausb. 95%)¹². Es muß beachtet werden, daß der Trocknungsgrad des zur Reaktion kommenden Bariumorthotellurats²¹ von ausschlaggebender Bedeutung für den Ablauf der Reaktion ist.

 XeF_2 wurde photolytisch dargestellt²². Xenon (Linde AG., Höllriegelskreuth, BRD) und Fluor (Kali-Chemie AG., Hannover, BRD) (von HF, NF₃ CF₄ usw. mit Hilfe einer auf der Temperatur von flüssigem Sauerstoff ge-

²¹ A. Engelbrecht und F. Sladky, Mh. Chem. 96, 360 (1965).

²² L. V. Streng und A. B. Streng, Inorg. Chem. 4, 1370 (1965); S. M. Williamson, F. Sladky und N. Bartlett, "Inorganic Syntheses", ed. W. L. Jolly, McGraw-Hill, New York, 1968, Vol. 11, 147.

haltenen Kühlfalle gereinigt) werden im 1:1-Gas-Verhältnis in einem 1-Liter-Pyrexkolben bis zu einem Druck von 1 atm gefüllt und der Bestrahlung durch Sonnenlicht ausgesetzt. Nach etwa 3 Stdn. bilden sich die ersten XeF₂-Kristalle an der Glaswandung.

Brompentafluorid (Matheson Company, East Rutherford, N.J., USA) wurde bei etwa 25° C mit elementarem F_2 behandelt und über Kühlfallen vakuumdestilliert.

 XeF_6 wurde in einem Monel-Hochdruck-Autoklaven aus den Elementen bei Drücken von etwa 250 atm und 300° C dargestellt. Durch Vakuumsublimation wurde es von XeF₂, XeF₄ und XeOF₄ befreit²³.

Vakuum-System und Reaktionsgefäße

Alle Reaktionen wurden in einem Monel-Vakuum-System, zusammengebaut mit Hilfe von "Swagelock"-Kompressionsdichtungen oder Hartsilbergelöteten "Cajon"-Verbindungsstücken, tensimetrisch und gewichtsmäßig verfolgt. "Kovar"-Glas-zu-Metall-Anschlußstücke stellten die Verbindung zu einem Glas-Vakuumsystem (10⁻³ Torr) her.

Als Druckanzeiger wurden zwei "Helicoid" Bourdon-Manometer (Bereich 0 bis 1000 Torr und 0 bis 450 ψ) und ein "Balzers" Pirani-Manometer (TPG 030) (Bereich 2 bis 10⁻³ Torr) verwendet. Monel "Whitey"-Hähne (I, VS 4) und "Autoclave Engineering"-Hähne für den Hochdruckteil (bis 4000 At.) dienten als Druckregler.

Die Reaktionen wurden in wägbaren Kel-F-Behältern, versehen mit Kel-F-Hähnen (Gewicht zusammen etwa 70 g) oder Kel-F-Fallen (Argonne National Lab., Chicago/III., USA) durchgeführt.

Darstellung von Xe(OTeF₅)₂

2,12 g (12,5 mMol) XeF₂ wurden durch Differenzwägung in ein Kel-F-Reaktionsgefäß eingewogen. Ein etwa fünffach molarer Überschuß an HOTeF₅ wurde portionsweise aufkondensiert und der gebildete Fluorwasserstoff jeweils abgesaugt, bis das Reaktionsprodukt den Schmp. von reinem Xe(OTeF₅)₂ zeigte (35—37° C). Ausb. 7,40 g (12,2 mMol) Xe(OTeF₅)₂ (97%, bez. auf XeF₂).

Ber. Te 41,9, F 31,2. Gef. Te 41,0, F 31,5.

Tellur wurde, nach Reduktion mit Hydrazinhydrochlorid in salzsaurer Lösung, in elementarem Zustand ausgewogen. Fluor wurde durch Destillation als H_2SiF_6 und anschließende acidimetrische Titration bestimmt.

Kristallographische Untersuchungen

Das mikrokristalline Pulver wurde in einer Trockenbox in Quarzkapillaren (0,3 bis 0,5 mm Durchmesser) eingefüllt, die abgeschmolzen wurden. Aufnahmen wurden mit einer 45-cm-G. E.-Pulverkamera mit Straumanis-Filmladung aufgenommen (Cu-K α , LiF-Monochromator). Bürger-Aufnahmen, die das reziproke Gitter unverzerrt wiedergeben, wurden mit einer integrierenden Präzessionskamera (Enraf-Nonius), versehen mit einer Polaroid-Kassette, mit Mo-K α -Strahlung aufgenommen.

²³ C. L. Chernick und J. G. Malm, "Inorganic Syntheses", McGraw-Hill, New York, 1966, Vol. 8, 258.

IR-Spektren

Gasspektren wurden mit einer 10-cm-Monel-Zelle, versehen mit AgCl-Fenstern und Teflondichtungen, aufgenommen, Spektren von Flüssigkeiten als Film zwischen KBr- oder AgCl-Platten (Perkin-Elmer 337 und 457).

Raman-Spektren

Kapillaren, die für *Debye—Scherrer*-Aufnahmen verwendet wurden, erwiesen sich als günstig für die Aufnahme von Laser-Raman-Spektren. Ein He-Ne-125-Spectra-Physics-Laser (6328 Å) wurde in Verbindung mit einem Jarrel-Ash-Doppelmonochromator (25—103) und einem EMI-Photomultiplier verwendet.

¹⁹F-KMR

Varian HR-100. Das Spektrum einer Lösung von $Xe(OTeF_5)_2$ in CCl_4 wurde in Glas- oder Kel-F-Röhrchen aufgenommen.

Den Herren Dr. W. Gretner, Dr. H. Hacker und Dr. J. Müller, Technische Hochschule München, bin ich zu großem Dank für die Hilfe bei der Aufnahme der ¹⁹F-KMR-, Raman- und Massenspektren verpflichtet. Für die stete Förderung meiner Arbeiten danke ich den Herren Univ.-Prof. Dr. A. Engelbrecht und Univ.-Prof. Dr. E. Hayek.